T-CloudDisk: A Tunable Cloud Storage Service
for Flexible Batched Synchronization

Zhenhua Li ', He Xiao !, Linsong Cheng !, Zhen Lu ', Jian Li !,
Christo Wilson 2, Yao Liu 3, Yunhao Liu *, Yafei Dai *

! Tsinghua University

2 Northeastern University

8 Binghamton University * Peking University

lizhenhual1983 @tsinghua.edu.cn, cbw @ccs.neu.edu, yaoliu@cs.binghamton.edu

ABSTRACT

Cloud storage services such as Dropbox have quickly gained enor-
mous popularity in recent years. They offer users with convenient
and reliable approaches to store and share data from anywhere, any
device at anytime. However, they are still suffering from the “traf-
fic overuse problem” in the presence of frequent, short data up-
dates [3]. To address this problem, we are implementing a tunable
cloud storage service (named “T-CloudDisk™) for flexible batched
synchronization. This paper introduces the characteristics, techni-
cal approach, and preliminary timeline of T-CloudDisk.

Categories and Subject Descriptors

H.2.4 [Information systems]: Information storage systems—Stor-
age architectures, Cloud based storage

General Terms

Design, Performance

Keywords

Cloud storage, Traffic overuse, Batched synchronization

1. INTRODUCTION

Cloud storage services such as Dropbox, SkyDrive, and Google
Drive have quickly gained enormous popularity in recent years.
They offer users with convenient and reliable approaches to store
and share data from anywhere, any device at anytime. Howev-
er, we observe that cloud storage services are still suffering from
the “traffic overuse problem” in the presence of frequent, short
data updates, and thus propose a middleware-based batched syn-
chronization solution (named “UDS”, i.e. Update-batched Delayed
Sync) to address this problem [3]].

Although UDS significantly reduces the traffic overuse, acting as
amiddleware between the user’s local filesystem and the concerned
cloud storage application (like Dropbox), it requires considerable
additional storage space in the user’s local disk, and currently it us-
es fixed buffer size and timer threshold for batched synchronization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Middleware 2013 Posters and Demos Track, December 9—13, Beijing, Chi-
na

Copyright 2013 ACM 978-1-4503-2549-3/13/12 ...$15.00.

nopcnsta(k
Swift

amazon |S3

S

T-CloudDisk

aliyn.com

RESTful APIs

Liveness
Beacons

File Meta-
Content Data

Figure 1: High-level system architecture of the T-CloudDisk
storage service.

In order to overcome these shortcomings, we are implementing an
independent, tunable cloud storage service (named “T-CloudDisk”)
for flexible batched synchronization. The abovementioned three
characteristics are explained as follows:

o [ndependent: T-CloudDisk is a self-contained cloud storage
service, rather than a middleware that relies on other ser-
vices’ applications. As depicted in Figure |1} T-CloudDisk
has its own user application and private cloud that maintain-
s the critical meta-data and user liveness information. With
such an independent service, we are able to conduct more
in-depth, white-box research on cloud storage.

e Tunable: To avoid the expensive infrastructure cost and en-
hance the service scalability, T-CloudDisk outsources all the
file contents to a (few) public cloud(s) that support RESTful
APIs (in particular the bucket-object data model), such as A-
mazon S3, Aliyun.com OSS, and so forth. Besides, we are
also deploying our own “public cloud” based on the open-
source OpenStack Swift framework.

o Flexible: The T-CloudDisk application allows the user to
customize the buffer size and timer threshold according to
her/his specific requirements, as shown in Figure 2] This in-
creases the flexibility of batched synchronization because it
enables the user’s own tradeoff between traffic usage and us-
er experience.

In the remainder of this paper, we first review the related work in
Section[2] and then briefly describe our technical approach as well
as a preliminary timeline in implementing the T-CloudDisk service.

2. RELATED WORK

Among today’s dozens of commercial cloud storage services,
Dropbox is the earliest and most representative. Drago et al. s-

tudy the system architecture and performance of Dropbox through
both large-scale ISP-level measurements [2] and small-scale bench-
marking experiments [[1]. Their results reveal that frequent, short
data updates may well impair the data sync throughput and traffic
efficiency, and suggest using a bundling scheme for batched syn-
chronization.

Li et al. are the first to (explicitly) identify the “traffic overuse
problem" that causes Dropbox-like cloud storage applications to u-
pload unnecessarily large amounts of data sync traffic to the cloud [3}
4]]. To address this problem, they propose an efficient batched syn-
chronization middleware solution (i.e. UDS) in [3]], and an adaptive
timer-triggered delta sync solution (i.e. aTDS) in [4]], respectively.
The T-CloudDisk service presented in this paper can be taken as an
extension work of UDS and aTDS.

3. APPROACH AND TIMELINE
3.1 Technical Approach

Implementing a Dropbox-like cloud storage service (such as T-
CloudDisk) typically relies on two fundamental utilities: 1) a file
change detector that monitors changes to the user’s local sync fold-
er and reports them to the user’s application; 2) a delta sync utility
that computes the binary diff of modified files and only sends the
altered bits to the cloud (for saving sync traffic). As for Linux,
the former can be the kernel inotify API and the latter can be the
standard rsync tool. For example, the UDS middleware [3] is de-
veloped by using inotify and rsync. As for Windows, inotify can be
replaced by the FindFirstChangeNotification and ReadDirecto-
ryChangesW APIs, and rsync can be replaced by the cwRsync
tool. In a word, the technical approach is independent of operating
systems.

Flexible batched synchronization of T-CloudDisk is mainly en-
abled by two critical variables: 1) the buffer size c, i.e. the “Batched
Sync Buffer” in Figure 2] and 2) the timer threshold ¢, i.e. the
“Batched Sync Timer” in Figure[2] Specifically, the cloud storage
application maintains a byte counter that ensures frequent, short
updates are batched together into chunks of at least some minimum
size (i.e. ¢ bytes) before they get pushed to the cloud (including
both the public cloud and the private cloud). Meanwhile, the appli-
cation also maintains a timer. Whenever a file is created/modified,
the timer gets reset to zero. Once the timer reaches a threshold val-
ue (i.e. t seconds), then all new/modified files in the sync folder
are pushed to the cloud, regardless of how much the byte counter
accounts to. In essence, the two variables represent the tradeoff be-
tween sync traffic usage and timeliness of updates to the cloud (or
says user experience).

When configuring the two variables for the UDS middleware,
we chose ¢ = 250 KB and ¢ = 5 seconds based on our Dropbox
benchmarking experiments [3]], because using a larger c or ¢ only
brings about trivial sync traffic decrease while obviously affects the
user experience. Nevertheless, the above fixed settings of ¢ and ¢
are generally restricted to Dropbox[T_]and our specific benchmarking
environments. As a result, we allow users to customize their own
buffer size and timer threshold in T-CloudDisk, so as to adapt to
their diverse working requirements and environments.

3.2 Preliminary Timeline

At the moment (Oct. 10, 2013), we have implemented the fol-
lowing functions for T-CloudDisk on top of the Aliyun.com OSS
(Online Storage Service):

"Even Dropbox may adjust its system architecture and data sync
mechanism in the future.

thuclouddisk@gmail.com

& T-CloudDisk
— 1.6G/4G

"To

Batched Sync Bufferr 025 MB @

BTN

Balched Sync Timer: | 5 | second @

Sync Switch: | on

Traffic Statistics

] Sync Traffic since 2013/09/30, 14:20:15

[
A{{ { 143.62 Mb for 18.31 Mb of data update

recalculate

Figure 2: UI snapshot of the T-CloudDisk PC client.

User account registration and log on.

Basic file (folder) upload, download, modify, and delete op-
erations.

e Batched synchronization with regard to a single file.

e The control panel for configuring the buffer size ¢ and timer
threshold ¢.

e The statistics panel for displaying how much traffic is con-
sumed for synchronizing how much data updates.

Below are what we expect to finish before the Middleware’13
live demo date (Dec. 9, 2013):

e Batched synchronization across multiple files.

e Novel file and data updates compression before synchroniza-
tion.

e T-CloudDisk can work on top of other public clouds than
Aliyun.com OSS, such as Amazon S3 (Simple Storage Ser-
vice) and OpenStack Swift.

Finally, our long-term plan includes (but is not limited to):

e Homepage hosting, flexible file sharing, and collaborative
file editing functions.

e Full-file and block-level file deduplication.

e File version management, in particular file version rollback
for data recovery.

e Developing mobile (e.g. Android and iOS) applications for
T-CloudDisk.

4. REFERENCES

[1] DRAGO, I., BoccHI, E., MELLIA, M., SLATMAN, H., AND
PrAS, A. Benchmarking Personal Cloud Storage. In Proc. of
IMC (2013).

[2] DRAGO, 1., MELLIA, M., MUNAFO, M., SPEROTTO, A.,
SADRE, R., AND PRAS, A. Inside Dropbox: Understanding
Personal Cloud Storage Services. In Proc. of IMC (2012).

[3] L1, Z., WILSON, C., , JIANG, Z., L1U, Y., ZHAO, B., JIN,

C., ZHANG, Z.-L., AND DALI, Y. Efficient Batched

Synchronization in Dropbox-like Cloud Storage Services. In

Proc. of Middleware (2013).

L1, Z., ZHANG, Z.-L., AND DAI, Y. Coarse-grained Cloud

Synchronization Mechanism Design May Lead to Severe

Traffic Overuse. Journal of Tsinghua Science and Technology

18,3 (2013).

[4

—_

	Introduction
	Related Work
	Approach and Timeline
	Technical Approach
	Preliminary Timeline

	References

